Acta Cryst. (1995). C51, 1270-1271

(3-Chloro-1,2-propanediolato-0,0')bis(2.3-dimethyl-2.3-butanediolato-O.O')tungsten(VI)

ARI LEHTONEN AND REIJO SILLANPÄÄ

University of Turku, Department of Chemistry, FIN-20500 Turku, Finland

(Received 29 November 1994: accepted 10 January 1995)

Abstract

The title compound, $[W(C_3H_5ClO_2)(C_6H_{12}O_2)_2]$, is a mononuclear complex in which the central tungsten(VI) cation is surrounded by six oxygen donors of three chelating diolato ligands. The WO₆ unit adopts a distorted octahedral geometry.

Comment

As part of our study of tungsten(VI)-diolato complexes, the crystal structure of (3-chloro-1,2-propanediolato)bis(2,3-dimethyl-2,3-butanediolato)tungsten(VI), (I), is reported.

Fig. 1. Structure of the title compound showing 30% probability displacement ellipsoids. H atoms are omitted for clarity.

©1995 International Union of Crystallography Printed in Great Britain - all rights reserved

A drawing of the mononuclear complex is shown in Fig. 1. The W atom is surrounded by six O atoms of three chelating diolato ligands in a $(\lambda\lambda\lambda)lel_3$ conformation. The distorted octahedral WO₆ unit is similar to those found in other tris(diolato)tungsten(VI) complexes, such as $[W(eg)_3]$, where H₂eg is 1,2-ethanediol (Scherle & Schröder, 1974), and [W(eg)(pin)₂] and $[W(pin)_3]$, where H₂pin is 2,3-dimethyl-2,3-butanediol (Lehtonen & Sillanpää, 1994; Chisholm, Parkin, Streib & Eisenstein, 1994). In the title complex, the W-O distances range from 1.890(8) to 1.905(7) Å for the pin ligands, and are 1.930(7) and 1.930(8) Å for the 3-chloropropanediolato ligand. This lengthening of the W-O bonds may be due to the electronegative chloro substituent. A similar phenomenon is clearly seen in tungsten complexes with fluoro-substituted alcoholato ligands (Schrock, DePue, Feldman, Schaverien, Dewan & Liu, 1988).

Experimental

[W(eg)(pin)₂] (4.0 mmol, 1.91 g) and 3-chloro-1,2-propanediol (4.0 mmol, 0.33 ml) were dissolved in toluene in a distillation apparatus under an N2 atmosphere. The solution was allowed to boil and H₂eg, which was liberated in the reaction, was distilled off as a toluene azeotrope. After evaporation of the solvent under vacuum, the white residue was crystallized from hot hexane (5.0 ml) in 85% yield. Crystals suitable for X-ray analysis were obtained by sublimation at 333 K and 0.5 Torr (1 Torr = 133.322 Pa).

Crystal data

$$\begin{bmatrix} W(C_3H_5ClO_2)(C_6H_{12}O_2)_2 \end{bmatrix} & Mo \ K\alpha \ radi \\ M_r = 524.68 & \lambda = 0.71069 \\ Triclinic & Cell parame \\ reflections \\ a = 9.315 (3) \ Å & \theta = 4.7-8.8' \\ b = 12.995 (5) \ Å & \mu = 6.168 \ m \\ c = 8.913 (3) \ Å & T = 293 (2) \\ \alpha = 105.63 (3)^\circ & Bright prism \\ \beta = 104.29 (3)^\circ & 0.14 \times 0.10 \\ \gamma = 69.98 (3)^\circ & Colourless \\ V = 961.9 (6) \ Å^3 \\ Z = 2 \\ D_x = 1.812 \ Mg \ m^{-3} \\ \end{bmatrix}$$

Data collection

Rigaku AFC-5S diffractom- $R_{\rm int} = 0.038$ eter $\theta_{\rm max} = 25.01^{\circ}$ $h = 0 \rightarrow 11$ $\omega/2\theta$ scans Absorption correction: $k = -15 \rightarrow 15$ $l = -11 \rightarrow 11$ ψ scans (North, Phillips & Mathews, 1968) 3 standard reflections $T_{\rm min} = 0.83, \ T_{\rm max} = 1.00$ 3614 measured reflections 3383 independent reflections 2628 observed reflections $[I > 2\sigma(I)]$

ation Å ters from 20 nm^{-1} K $\times 0.10 \text{ mm}$

monitored every 150

intensity decay: 2.8%

reflections

Refinement	
Refinement on F^2	$(\Delta/\sigma)_{\rm max} < 0.001$
R(F) = 0.0466	$\Delta \rho_{\rm max} = 1.117 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.1225$	$\Delta \rho_{\rm min} = -1.548 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.056	Atomic scattering factors
3383 reflections	from International Tables
208 parameters	for Crystallography (1992,
H-atom parameters not	Vol. C, Tables 4.2.6.8 and
refined	6.1.1.4)
$w = 1/[\sigma^2(F_o^2) + (0.0534P)^2]$	
where $P = (F_o^2 + 2F_c^2)/3$	

Table	1.	Fract	tional	atomic	coordinates	and	equival	lent
isotropic displacement parameters (Å ²)								

$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	Z	U_{eq}
WI	0.08068 (5)	0.27828 (4)	0.12315 (6)	0.0332 (2)
C11	-0.4299 (4)	0.5992 (3)	0.1666 (5)	0.0744 (11)
01	-0.0950 (8)	0.2970 (6)	0.2167 (9)	0.040 (2)
O2	0.0194 (8)	0.4375 (7)	0.2056 (9)	0.043 (2)
03	-0.0015 (9)	0.3083 (6)	-0.0824 (9)	0.040 (2)
04	0.0651 (8)	0.1372 (7)	0.0035 (8)	0.040 (2)
05	0.2140 (8)	0.2111 (6)	0.2915 (8)	0.036 (2)
06	0.2757 (8)	0.2879 (6)	0.1072 (9)	0.040 (2)
C1	-0.1522 (13)	0.4023 (9)	0.3185 (13)	0.042 (3)
C2	-0.1273 (13)	0.4875 (10)	0.2512 (14)	0.045 (3)
C3	-0.2459 (15)	0.5189 (11)	0.1094 (15)	0.053 (3)
C4	-0.1392 (16)	0.2649 (13)	-0.3443 (15)	0.066 (4)
C5	-0.0031 (14)	0.2200 (12)	-0.2192 (14)	0.050 (3)
C6	-0.0268 (12)	0.1275 (10)	-0.1516 (13)	0.039 (3)
C7	0.0334 (17)	0.0085 (11)	-0.2459 (15)	0.057 (3)
C8	0.1499 (16)	0.1863 (13)	-0.2731 (16)	0.063 (4)
C9	-0.1927 (13)	0.1484 (12)	-0.1354 (14)	0.051 (3)
C10	0.4576 (16)	0.1717 (12)	0.4707 (14)	0.058 (3)
C11	0.3803 (13)	0.1772 (9)	0.3013 (13)	0.040 (3)
C12	0.4044 (12)	0.2698 (10)	0.2351 (14)	0.043 (3)
C13	0.5530 (14)	0.2321 (13)	0.1689 (17)	0.064 (4)
C14	0.4257 (15)	0.0604 (11)	0.1991 (16)	0.058 (4)
C15	0.3942 (16)	0.3772 (11)	0.3536(16)	0.060 (4)

Table 2. Selected geometric parameters (Å, °)

	-	-	
W1-01	1.930(7)	01C1	1.431 (13)
W1-02	1.930 (8)	O2—C2	1.407 (13)
W1-04	1.890 (8)	O3—C5	1.433 (15)
W1-03	1.892 (7)	O4—C6	1.434 (12)
W1-05	1.897 (7)	O5-C11	1.445 (13)
W1-06	1.905 (7)	O6-C12	1.438 (13)
Cl1C3	1.791 (12)		
01	78.5 (3)	O3—W1—O6	90.0 (3)
01—W1—03	106.1 (3)	04—W1—05	90.7 (3)
01-W1-04	90.0 (3)	O4—W1—O6	106.9 (3)
01—W1—05	89.3 (3)	O5-W1-O6	78.3 (3)
01W106	158.9 (3)	C1-01-W1	117.1 (6)
02-W1-03	88.4 (3)	C2-02-W1	118.1 (7)
02—W1—04	159.0 (3)	C5O3W1	121.6 (7)
02—W1—05	106.5 (3)	C6	120.6 (7)
02—W1—06	88.7 (3)	C11-05-W1	120.4 (6)
03—W1—04	77.9 (3)	C12-06W1	120.2 (6)
03-W1-05	160.7 (3)		

Non-H atoms were refined anisotropically. H atoms were included in idealized positions with fixed displacement parameters (1.2 times the displacement parameter of the host atom). The tertiary C-H distances were fixed at 0.98 Å, the secondary C-H distances at 0.97 Å and the methyl group C-H distances at 0.96 Å. The largest maximum and minimum residual electron-density peaks were located about 1 Å from the W atom.

©1995 International Union of Crystallography Printed in Great Britain - all rights reserved

Data collection: TEXSAN (Molecular Structure Corporation, 1989). Cell refinement: TEXSAN. Data reduction: TEXSAN. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL93.

This work was supported by the NESTE Foundation.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1247). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Chisholm, M. H., Parkin, I. P., Streib, W. E. & Eisenstein, O. (1994). Inorg. Chem. 33, 812-815.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Lehtonen, A. & Sillanpää, R. (1994). Polyhedron, 13, 2519-2524.
- Molecular Structure Corporation (1989). TEXSAN. TEXRAY Single Crystal Structure Analysis Software. Version 5.0. MSC, 3200 Reseach Forest Drive, The Woodlands, TX 77381, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Scherle, J. & Schröder, F. A. (1974). Acta Cryst. B30, 2772-2775.
- Schrock, R. R., DePue, R. T., Feldman, J., Schaverien, C. J., Dewan, J. C. & Liu, A. H. (1988). J. Am. Chem. Soc. 110, 1423-1435.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.

Acta Cryst. (1995). C51, 1271-1275

Diagua(5.10,15,20-tetraphenylporphinato)iron(III) Perchlorate, $[Fe(C_{44}H_{28}N_4)(H_2O)_2]ClO_4$

BEISONG CHENG AND W. ROBERT SCHEIDT

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA

(Received 19 October 1994; accepted 23 January 1995)

Abstract

The crystal structure of a new crystal form of [Fe(TPP)(H₂O)₂]ClO₄ has been determined. The asymmetric unit contains one molecule in a general position and a half molecule with required inversion symmetry. The two independent molecules have almost identical average values for the equatorial Fe-N_p bond lengths [2.029(4) and 2.028(6)Å], and the axial Fe-O bond lengths are 2.140 (2) and 2.121 (3) Å for molecule 1 (in a general position) and 2.126 (2) Å for molecule 2 (in a